

Thoughts on how to do good research

Joerg Widmer, Research Professor IMDEA Networks, Madrid, Spain

Developing the Science of Networks

Outline

"It is really important to **do the right research** as well as to **do the research right**."

George Springer, Stanford University

- Research
 - Choosing your research area
 - Finding the right problem
 - Coming up with a solution
 - Evaluating your idea
 - Dissemination

- You
 - Motivation
 - Time-management
 - Research ethics
 - Work live balance

CHOOSING YOUR RESEARCH AREA

Check Out Research Areas

- Choose something you like, research should be fun (most of the time)!
- Look for areas that have not yet been explored thoroughly
 - Not too broad, not too narrow, not too old
 - With some (practical) relevance
- Talk to researchers in the area and attend as many research talks as you can
 - Find the most well-known research groups
 - Look at what they are publishing and how their focus is changing
- Read survey papers in some areas of interest
 - First go for breadth, then depth
 - Keynote speeches from top researchers are among the best resources out there
- You may have to take PhD courses anyway; pick them wisely!
 - ... and use Coursera, Udemy, Udacity, Edx

FINDING THE RIGHT PROBLEM AND SOLUTION

Heilmeier's Catechism

You must know the answers to the following questions before moving on to writing a good paper:

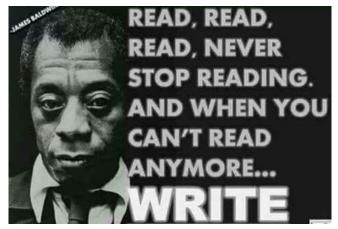
- What problem do you want to solve?
- Who cares about this problem and why?
- What solutions exist and why are they that inadequate?
- What is your proposed solution to this problem?
- What is new about your approach?
- How can you demonstrate that this is a good solution?
- Who will care if you succeed?
- How long will it take?
- What are the risks?

Heilmeier's Catechism: A set of questions credited to George H. Heilmeier that anyone proposing a research project or product development effort should be able to answer.

What problem do you want to solve?

- Follow your passion
 - You're doing this for yourself
- Make sure you fully understand the problem
 - You have to understand the problem before going on the solution
 - Taking time to think this through at the very beginning will save you loads of time later on
 - Resist the temptation to jump right in with a solution
- Write it down
 - Formulate a clear research question and objective

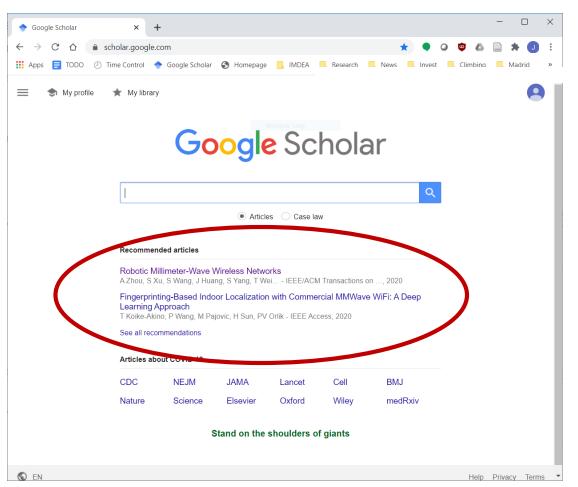
Who cares about this problem and why?

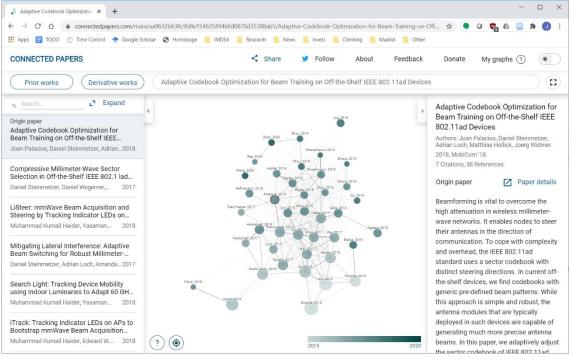

- Make sure its a problem you care about
 - This must be worth your own time!
 - Don't be too picky (at the beginning)
 - ... but if you don't care about the problem, the research will be agonizing and you won't come up original ideas
- ... and ideally not only you care about
 - Maybe you're brilliant and no one else realized the potential (but then again, maybe not)
 - But you need collaborators, funding, citations, ...
 - Having impact is critical

\

What solutions exist and why are they inadequate?

- Look for a problem for which there is no good (enough) solution yet
- Let your literature search guide you
 - First go for breadth, then depth
- Critically review the existing literature
 - It is often not as easy as it seems (assumptions, caveats, ...)
 - Questions that arise while reviewing can be excellent seeds for your own research
 - Don't be afraid to contact the authors and ask questions
- The more you understand existing solutions, the better you can find alternative solutions and new questions
 - Avoid duplicate work!
- Yes, you can write a survey paper, but don't overdo it!

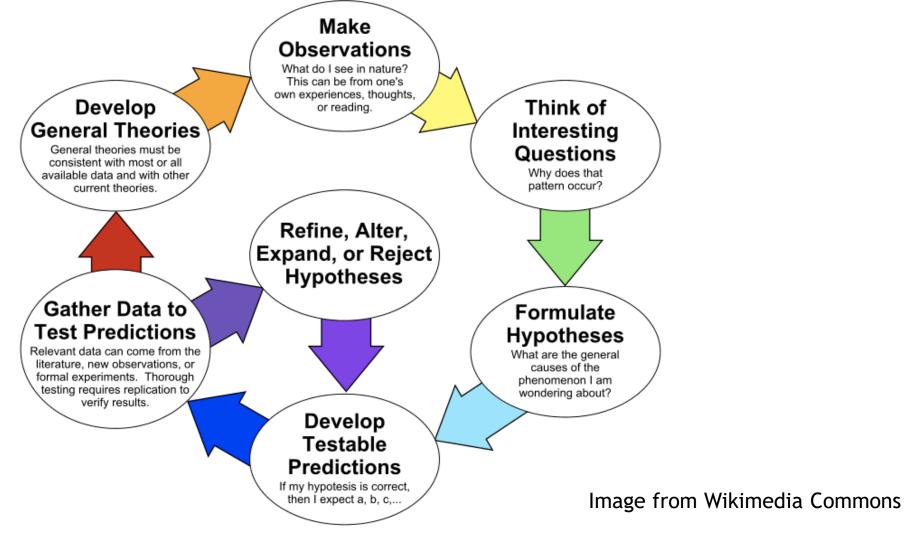



What solutions exist and why are they inadequate?

- Good background knowledge is essential to develop new ideas
- Know and understand the relevant building blocks from those papers
 - Typical optimization approaches, algorithms
 - Protocol design components
 - Signal processing mechanisms
 - Theoretical background (information theory, ...)
- Develop a core tool-set you know in detail and can apply well
- Read technology news to understand the industry, what solutions make it to the market, what are the constraints
- Continue reading while doing the research

Google Scholar is Your Friend

https://www.connectedpapers.com/


What is your solution? What is new about it?

- It's fine to start your PhD doing incremental improvements to the state of the art
 - You learn to write papers and sometimes this might lead to a bigger idea
 - BUT: there are already far too many incremental papers
- The goal of your PhD is to learn how to do original research
 - Scientific progress itself is incremental, but it must not lack innovation
 - Make sure you look for more novel ideas and bigger problems as soon as possible
 - Set the bar high: you never write an excellent paper by accident

How can you demonstrate that this is a good solution?

• The Scientific Method: set of general principles for any research

Critical Thinking

- Constantly question your solution and results
 - Attack your solution from all possible angles to find the holes (or others will)
 - Questioning things is what research is all about
 - More often than not, it's been done before. If not, there may be good reasons why people take a different approach.
- Beware of confirmation bias
 - CS research is often (too) hands on; we can learn a lot from other disciplines
 - Think about what the results mean
 - Is this what you expect? Why?
- It's hard to be creative and critical at the same time → switch between the two
 - Good research needs both!

Dissemination

- The best results are worthless if others don't see them
 - Prioritize quality over quantity
 - Avoid salami paper writing
- Learn how to communicate scientific results
 - How to write a good research paper is addressed below
- Open science: collaborative, reproducible and reusable research
 - Common in other areas, and critical for CS/EE to advance more rapidly
 - Open-access publishing, open-source software, open data, open hardware
 - Common testbeds

Paper Writing

- Abstract: concisely state the problem, your approach and solution, and the main contributions results of the paper
- Introduction: (Stanford InfoLab's patented five-point structure)
 - 1. What is the problem?
 - 2. Why is it interesting and important?
 - 3. Why is it hard?
 - 4. Why hasn't it been solved before?
 - 5. What are the key components of my approach and results?
- Don't overclaim, don't over-criticize others

From: Tips for Writing Technical Papers Jennifer Widom, January 2006

Paper Writing

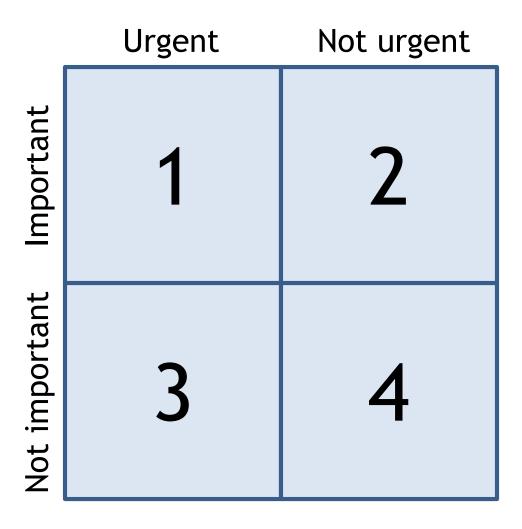
- The paper should tell a coherent story
 - 1. What is the problem?
 - 2. Why is it interesting and important?
 - 3. Why is it hard?
 - 4. Why hasn't it been solved before?
 - 5. What are the key components of my approach and results?
- Tell the story the results should evoke in the mind of the reader, not the story of how you arrived at your results
- Use a "top-down" description: readers should be able to see where the story is going
 - Note: readers may/will skip the math and details
 - Justify your design choices
 - Rule of thumb: clear new important technical contribution by page 3
- Clearly delineate material that is not original but is needed for the paper

From: Tips for Writing Technical Papers Jennifer Widom, January 2006

YOU

Motivation

- There's no easy way: doing research/a PhD is hard and at times you will get frustrated along the way
- Take away the pressure
 - Remind yourself that you're doing this because it's fun and you're curious!
- Breaking down a concept into its core elements, understanding these elements and then use them for your own ideas
 - This a challenge, but drives the ideas that fundamentally progress science
 - While you are formulating questions, you are already moving towards the answers



Time management

- There is plenty of material out there; use it
- Work in intervals (say 30-90 minutes, followed a break)
 - You cannot sustain mental productivity for 8 hours a day
- But make time for deep work
 - Dedicate continuous interruption-free time to unraveling one small subquestion of your research question
- There is no such thing as multitasking
 - Remove time-wasters; keep Whatsapp, Facebook, mail/news notifications, games, etc. separate from your work time
- Learn to say "No", learn to delegate

Stephen Covey's Time Management Matrix

Write It Down!

- Keep a research journal, try to write in it every day
 - Keep track of what you have done, why you have done it, and what is/is not working
 - Easy to forget the details of what you worked on two weeks ago, let along half a year ago (you'd be surprised how fast you forget things)
 - Revisiting thoughts prevents you from reinventing the wheel
- Write down your research problem and ideas
 - Great exercise to organize your thoughts
 - Great practice for paper writing
 - and it helps when you're stuck
- Weekly/monthly progress monitoring
 - Most important results and insights from last week/month
 - What deviations were there and why
 - Goals for next week/month

Research Ethics

- Always maintain scientific integrity:
 Trust is the basis of scientific relationships!
 - Nothing hurts your research more than losing the trust of others
- This not only refers to plain fraud (falsifying results or omitting what doesn't suit you), but just as much trying not to kid yourself (confirmation bias)
 - Careful, this starts small; fight it every step along the way!
- Be very careful with (self-)plagiarism: never copy, use proper citation
- Fortunately our area is also changing: stronger focus on repeatability, verification, open access to data, ...

Work life balance

- Eat, sleep, and exercise above all else
 - Exercise is a great way to keep your brain fresh and stress-free
 - Huge difference in mental clarity and focus
 - Helps avoid tunnel vision

Summary

- Plan your work
- Know what you're doing and why
- Read, write!
- Find out what works for you
 - One size does not fit all
- Have fun!

Resources

- Eva Lantsoght, "The A-Z of the PhD Trajectory: A Practical Guide for a Successful Journey"
- Ken Blanchard and Spencer Johnson, "The one minute manager"
- Stephen Covey, "The Seven Habits of Highly Effective People"
- How to do good research
 - https://www.site.uottawa.ca/~bochmann/Projects/how-to-do-good-research/index.html
 - https://terrytao.wordpress.com/career-advice/
 - https://www.cs.cmu.edu/~mleone/how-to.html
 - https://dspace.mit.edu/handle/1721.1/41487
 - http://www.cs.cmu.edu/~mblum/research/pdf/grad.html
 - http://www.cs.utexas.edu/~EWD/transcriptions/EWD06xx/EWD637.html
 - http://www.paulgraham.com/hamming.html

Resources

- How to choose a research topic?
 - https://isrl.byu.edu/wp-content/uploads/2015/05/How-to-Choose-a-Research-Topic.pdf
 - https://www.chronicle.com/article/Choosing-a-Research-Topic/45641
- How to Write Research Papers
 - https://users.cs.northwestern.edu/~kch670/useful/writepapers
 - https://www.cs.tufts.edu/~nr/pubs/two.pdf
 - And countless more

